Ulrich ideals and numerical semigroup rings

Naoki Endo

Meiji University

based on the recent works jointly with

S. Goto, S.-i. lai, and N. Matsuoka

INdAM workshop: International meeting on numerical semigroups - Roma 2022

June 15, 2022

1. Introduction

This talk is based on the recent researches below.

- N. Endo and S. Goto, Ulrich ideals in numerical semigroup rings of small multiplicity, arXiv:2111.00498
- N. Endo, S. Goto, S.-i. Iai, and N. Matsuoka, Ulrich ideals in the ring k[[t⁵, t¹¹]], arXiv:2111.01085

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

What is an Ulrich ideal?

- In 1971, J. Lipman investigated stable maximal ideal in a CM local ring.
- In 2014, S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, K.-i. Yoshida modified the notion of stable maximal ideal, which they call an Ulrich ideal.

Let

- (A, \mathfrak{m}) be a CM local ring with $d = \dim A$.
- √I = m, I contains a parameter ideal Q of A as a reduction (i.e. Iⁿ⁺¹ = QIⁿ for some n ≥ 0)

Definition 1.2 (Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014) We say that I is an <u>Ulrich ideal of A</u>, if (1) $I \supseteq Q$, $I^2 = QI$, and (2) I/I^2 is A/I-free.

Note that

• (1)
$$\iff$$
 $\operatorname{gr}_{I}(A) = \bigoplus_{n \geq 0} I^{n} / I^{n+1}$ is a CM ring with $\operatorname{a}(\operatorname{gr}_{I}(A)) = 1 - d$.

• If $I = \mathfrak{m}$, then (1) \iff A has minimal multiplicity e(A) > 1.

• (2) and $I \supseteq Q \implies \mathsf{pd}_A I = \infty$ (Ferrand, Vasconcelos, 1967)

Assume that $I^2 = QI$. Then the exact sequence

$$0
ightarrow Q/QI
ightarrow I/I^2
ightarrow I/Q
ightarrow 0$$

of A/I-modules shows

$$I/I^2$$
 is A/I -free $\iff I/Q$ is A/I -free.

Therefore, if I is an Ulrich ideal of A, then

so that

$$d+1 \leq \mu_A(I) \leq d + r(A).$$

Hence, when A is a Gorenstein ring,

every Ulrich ideal I is generated by d + 1 elements (if it exists).

Image: A matrix and a matrix

For every Ulrich ideal I of A, we have

Theorem 1.3 (Goto-Takahashi-T, 2015)

 $\operatorname{Ext}_{A}^{i}(A/I, A)$ is A/I-free for $\forall i \in \mathbb{Z}$.

Hence

$$\mu_A(I) = d + 1 \iff \operatorname{G-dim}_A A/I < \infty.$$

This shows if A is G-regular, then $\mu_A(I) \ge d + 2$.

Consequently, if I is an Ulrich ideal of A with $\mu_A(I) = d + 1$, then

- A/I is Gorenstein \iff A is Gorenstein,
- I is a totally reflexive A-module,
- $pd_A I = \infty$, and

the minimal free resolution of I has a very restricted form.

< 口 > < 合

In what follows, assume d = 1 and I is an Ulrich ideal of A with $\mu_A(I) = 2$. Write I = (a, b), where $a, b \in A$ and Q = (a) is a reduction of I. By taking $c \in I$ with $b^2 = ac$, the minimal free resolution of I has the form

$$\cdots \longrightarrow A^{\oplus 2} \xrightarrow{\begin{pmatrix} -b & -c \\ a & b \end{pmatrix}} A^{\oplus 2} \xrightarrow{\begin{pmatrix} -b & -c \\ a & b \end{pmatrix}} A^{\oplus 2} \xrightarrow{\begin{pmatrix} a & b \end{pmatrix}} I \longrightarrow 0$$

We then have I = J, once

 $\operatorname{Syz}_{A}^{i}(I) \cong \operatorname{Syz}_{A}^{i}(J)$ for some $i \geq 0$

provided I, J are Ulrich ideals of A. (GOTWY, 2014)

Corollary 1.4 (GOTWY, 2014) Suppose that A is a Gorenstein ring. If I, J are Ulrich ideals of A with $mJ \subseteq I \subsetneq J$, then A is a hypersurface.

Naoki Endo (Meiji University)

June 15, 2022 7 / 17

Let \mathcal{X}_A be the set of Ulrich ideals in A.

On the other hand

- If A has finite CM representation type, then \mathcal{X}_A is finite. (GOTWY, 2014)
- Suppose that ∃ a fractional canonical ideal K. Set c = A : A[K].
 If A is a non-Gorenstein almost Gorenstein ring, then

 $\mathcal{X}_A \subseteq \{\mathfrak{m}\}$ (GTT, 2015)

If A is a 2-almost Gorenstein ring with minimal multiplicity, then

 $\{\mathfrak{m}\} \subseteq \mathcal{X}_A \subseteq \{\mathfrak{m}, \mathfrak{c}\}$ (Goto-Isobe-T, 2020)

We expect that there is a strong connection between

the behavior of Ulrich ideals and the structure of base rings.

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

Question 1.5

How many two-generated Ulrich ideals are contained in a given numerical semigroup ring?

Let

•
$$0 < a_1, a_2, \dots, a_\ell \in \mathbb{Z}$$
 s.t. $gcd(a_1, a_2, \dots, a_\ell) = 1$

•
$$H = \langle a_1, a_2, \dots, a_\ell \rangle = \left\{ \sum_{i=1}^\ell c_i a_i \ \Big| \ 0 \le c_i \in \mathbb{Z} \text{ for all } 1 \le i \le \ell \right\}$$

• $A = k[[H]] = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq V = k[[t]] = \overline{A}$, where k is a field

• $c(H) = \min\{n \in \mathbb{Z} \mid m \in H \text{ for all } m \in \mathbb{Z} \text{ s.t. } m \ge n\}$

Note that $t^{c(H)}V \subseteq A$.

・ロト ・四ト ・ヨト ・ヨト

2. Method of computation

Previous Method

Let

- (A, \mathfrak{m}) be a Gorenstein local ring with dim A = 1,
- \mathcal{X}_A be the set of Ulrich ideals in A,
- \mathcal{Y}_A be the set of birational module-finite extensions B of A

(i.e., $A \subseteq B \subseteq Q(A)$ and B is a finitely generated A-module)

s.t. *B* is a Gorenstein ring and $\mu_A(B) = 2$.

Then, there exists a bijective correspondence

 $\mathcal{X}_{\mathcal{A}} \rightarrow \mathcal{Y}_{\mathcal{A}}, \ I \mapsto \mathcal{A}'$

where

$$A^{I} = \bigcup_{n>0} [I^{n} : I^{n}] = I : I.$$

Let

- V = k[[t]] be the formal power series ring over a field k
- A be a k-subalgebra of V.

We say that

A is a core of
$$V \quad \stackrel{def}{\Longleftrightarrow} \quad t^c V \subseteq A$$
 for some $c \gg 0$.

Example 2.1

- k[[H]] is a core of V,
- $A = k[t^2 + t^3] + t^4 V$ is core, but $A \neq k[[H]]$ for any numerical semigroup H.

Let A be a core of V and suppose $t^c V \subseteq A$ with $c \gg 0$. Then

$$k[[t^c, t^{c+1}, \ldots, t^{2c-1}]] \subseteq A \subseteq V$$

so that V is a birational module-finite extension of $A_{(\Box)}$, $A_{(\Box)}$,

Hence, for every core A of V,

• $V = \overline{A}$

- A is a CM complete local domain with dim A = 1
- $V/\mathfrak{n} \cong A/\mathfrak{m}$

where \mathfrak{m} (resp. $\mathfrak{n} = tV$) stands for the maximal ideal of A (resp. V).

Let o(-) denote the n-adic valuation of V, and set

$$H = v(A) = \{ o(f) \mid 0 \neq f \in A \}.$$

Note that

H = v(A) is symmetric \iff A is Gorenstein (Kunz, 1970)

Let I be an Ulrich ideal of A with $\mu_A(I) = 2$. Choose $f, g \in I$ s.t. I = (f, g) and $I^2 = fI$. Then

$$A' = I : I = \frac{I}{f} = A + A \cdot \frac{g}{f}$$

is a core of V, and v(A') is symmetric if A is Gorenstein.

Lemma 2.2 (Key Lemma)

Let I be an Ulrich ideal in A with $\mu_A(I) = 2$. Then one can choose $f, g \in I$ satisfying the following conditions, where a = o(f) and b = o(g).

Method of computation

- Step 1 · · · Let $I \in \mathcal{X}_A$ with $\mu_A(I) = 2$. Choose $f, g \in I$ which satisfy the conditions in Lemma 2.2.
- Step 2 · · · Consider $A' = A + A \cdot \frac{g}{f}$ and determine v(A').
- Step 3 · · · Determine the possible pair (o(f), o(g)).
- Step 4 · · · Determine the form of generators of *I*.
- Step 5 · · · Conversely, the ideal of the form as in Step 4 is an Ulrich ideal.

3. Main theorem

Theorem 3.1 (Main theorem)

Let $\ell \geq 7$ be an integer such that $gcd(3, \ell) = 1$ and set $A = k[[t^3, t^{\ell}]]$.

(1) Suppose that $\ell = 3n + 1$ where $n \ge 3$ is odd. Let $q = \frac{n-1}{2}$. Then

$$\mathcal{X}_{A} = \left\{ \left(t^{\ell} + \sum_{j=1}^{q} \alpha_{j} t^{\ell+3j-1}, t^{\ell+3q+2} \right) \middle| \alpha_{1}, \alpha_{2}, \dots, \alpha_{q} \in k \right\}$$
$$\bigcup \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3s}, t^{\ell+3i} \right) \middle| 1 \le i \le q, \alpha_{0}, \dots, \alpha_{i-1} \in k, \alpha_{0} \neq 0 \right\}$$

(2) Suppose that $\ell = 3n + 1$ where $n \ge 2$ is even. Let $q = \frac{n}{2}$. Then

$$\mathcal{X}_A = \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_s t^{\ell+3s}, t^{\ell+3i} \right) \mid 1 \leq i \leq q, \alpha_0, \dots, \alpha_{i-1} \in k, \alpha_0 \neq 0 \right\}.$$

▲ □ ▶ ▲ ■

Theorem 3.1 (continued)

(3) Suppose that $\ell = 3n + 2$ where $n \ge 1$ is odd. Let $q = \frac{n-1}{2}$. Then

$$\mathcal{X}_{A} = \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3s}, t^{\ell+3i} \right) \mid 1 \leq i \leq q, \alpha_{0}, \ldots, \alpha_{i-1} \in k, \alpha_{0} \neq 0 \right\}.$$

(4) Suppose that $\ell = 3n + 2$ where $n \ge 2$ is even. Let $q = \frac{n}{2}$. Then

$$\begin{aligned} \mathcal{X}_{A} &= \left\{ \left(t^{\ell} + \sum_{j=1}^{q} \alpha_{j} t^{\ell+3j-2}, t^{\ell+3q+1} \right) \ \middle| \ \alpha_{1}, \alpha_{2}, \dots, \alpha_{q} \in k \right\} \\ & \bigcup \left\{ \left(t^{6i} + \sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3s}, t^{\ell+3i} \right) \ \middle| \ 1 \leq i \leq q, \alpha_{0}, \dots, \alpha_{i-1} \in k, \alpha_{0} \neq 0 \right\}. \end{aligned}$$

Moreover, the coefficients α_i 's in the system of generators of $I \in \mathcal{X}_A$ are uniquely determined for I.

We denote by \mathcal{X}_{A}^{g} the set of Ulrich ideals in A generated by monomials in t. Then \mathcal{X}_{A}^{g} is a finite set (GOTWY, 2014).

Corollary 3.2

Let $\ell \geq 7$ be an integer s.t. $gcd(3, \ell) = 1$ and set $A = k[[t^3, t^{\ell}]]$. Then

(1) $\mathcal{X}_A \neq \emptyset$.

(2) \mathcal{X}_A is finite \iff k is a finite field.

(3) $\mathcal{X}_{A}^{g} = \emptyset \qquad \iff \ell = 3n+1 \text{ or } \ell = 3n+2 \text{ for some even integer } n \geq 2$

Example 3.3

Let $A = k[[t^3, t^7]]$. Then

$$\mathcal{X}_{A} = \{ (t^{6} + \alpha t^{7}, t^{10}) \mid 0 \neq \alpha \in k \}.$$

Hence, $\#X_A = \#k - 1$ and A does not contain monomial Ulrich ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you for your attention.

イロト イヨト イヨト イヨ

æ