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1. Introduction

This talk is based on the recent researches below.

N. Endo and S. Goto, Ulrich ideals in numerical semigroup rings of small
multiplicity, arXiv:2111.00498

N. Endo, S. Goto, S.-i. Iai, and N. Matsuoka, Ulrich ideals in the ring
k[[t5, t11]], arXiv:2111.01085

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.
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What is an Ulrich ideal?

In 1971, J. Lipman investigated stable maximal ideal in a CM local ring.

In 2014, S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, K.-i. Yoshida
modified the notion of stable maximal ideal, which they call an Ulrich ideal.
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Let

(A,m) be a CM local ring with d = dimA.
√
I = m, I contains a parameter ideal Q of A as a reduction

(i.e. I n+1 = QI n for some n ≥ 0)

Definition 1.2 (Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014)

We say that I is an Ulrich ideal of A, if

(1) I ⊋ Q, I 2 = QI , and

(2) I/I 2 is A/I -free.

Note that

(1) ⇐⇒ grI (A) =
⊕

n≥0 I
n/I n+1 is a CM ring with a(grI (A)) = 1− d .

If I = m, then (1) ⇐⇒ A has minimal multiplicity e(A) > 1.

(2) and I ⊋ Q =⇒ pdA I = ∞ (Ferrand, Vasconcelos, 1967)
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Assume that I 2 = QI . Then the exact sequence

0 → Q/QI → I/I 2 → I/Q → 0

of A/I -modules shows

I/I 2 is A/I -free ⇐⇒ I/Q is A/I -free.

Therefore, if I is an Ulrich ideal of A, then

I/Q ∼= (A/I )⊕(µA(I )−d),

Q :A I = I (i.e., I is a good ideal of A),

rA(I/Q) = (µA(I )− d) · r(A/I ) = r(A)

so that
d + 1 ≤ µA(I ) ≤ d + r(A).

Hence, when A is a Gorenstein ring,

every Ulrich ideal I is generated by d + 1 elements (if it exists).
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For every Ulrich ideal I of A, we have

Theorem 1.3 (Goto-Takahashi-T, 2015)

ExtiA(A/I ,A) is A/I -free for ∀i ∈ Z.

Hence

µA(I ) = d + 1 ⇐⇒ G-dimA A/I < ∞.

This shows if A is G -regular, then µA(I ) ≥ d + 2.

Consequently, if I is an Ulrich ideal of A with µA(I ) = d + 1, then

A/I is Gorenstein ⇐⇒ A is Gorenstein,

I is a totally reflexive A-module,

pdA I = ∞, and

the minimal free resolution of I has a very restricted form.
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In what follows, assume d = 1 and I is an Ulrich ideal of A with µA(I ) = 2.

Write I = (a, b), where a, b ∈ A and Q = (a) is a reduction of I .

By taking c ∈ I with b2 = ac , the minimal free resolution of I has the form

· · · −→ A⊕2

−b −c
a b


−→ A⊕2

−b −c
a b


−→ A⊕2

(
a b

)
−→ I −→ 0

We then have I = J, once

SyziA(I )
∼= SyziA(J) for some i ≥ 0

provided I , J are Ulrich ideals of A. (GOTWY, 2014)

Corollary 1.4 (GOTWY, 2014)

Suppose that A is a Gorenstein ring. If I , J are Ulrich ideals of A with
mJ ⊆ I ⊊ J, then A is a hypersurface.
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Let XA be the set of Ulrich ideals in A.

On the other hand

If A has finite CM representation type, then XA is finite. (GOTWY, 2014)

Suppose that ∃ a fractional canonical ideal K . Set c = A : A[K ].

If A is a non-Gorenstein almost Gorenstein ring, then

XA ⊆ {m} (GTT, 2015)

If A is a 2-almost Gorenstein ring with minimal multiplicity, then

{m} ⊆ XA ⊆ {m, c} (Goto-Isobe-T, 2020)

We expect that there is a strong connection between

the behavior of Ulrich ideals and the structure of base rings.
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Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

Question 1.5
How many two-generated Ulrich ideals are contained in a given numerical
semigroup ring?

Let

0 < a1, a2, . . . , aℓ ∈ Z s.t. gcd(a1, a2, . . . , aℓ) = 1

H = 〈a1, a2, . . . , aℓ〉 =
{∑ℓ

i=1 ciai

∣∣∣ 0 ≤ ci ∈ Z for all 1 ≤ i ≤ ℓ
}

A = k[[H]] = k[[ta1 , ta2 , . . . , taℓ ]] ⊆ V = k[[t]] = A, where k is a field

c(H) = min{n ∈ Z | m ∈ H for all m ∈ Z s.t. m ≥ n}

Note that tc(H)V ⊆ A.
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2. Method of computation

Previous Method
Let

(A,m) be a Gorenstein local ring with dimA = 1,

XA be the set of Ulrich ideals in A,

YA be the set of birational module-finite extensions B of A

(i.e., A ⊆ B ⊆ Q(A) and B is a finitely generated A-module)

s.t. B is a Gorenstein ring and µA(B) = 2.

Then, there exists a bijective correspondence

XA → YA, I 7→ AI

where
AI =

⋃
n≥0

[I n : I n] = I : I .
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Let

V = k[[t]] be the formal power series ring over a field k

A be a k-subalgebra of V .

We say that

A is a core of V
def⇐⇒ tcV ⊆ A for some c � 0.

Example 2.1

k[[H]] is a core of V ,

A = k[t2 + t3] + t4V is core, but A 6= k[[H]] for any numerical semigroup H.

Let A be a core of V and suppose tcV ⊆ A with c � 0. Then

k[[tc , tc+1, . . . , t2c−1]] ⊆ A ⊆ V

so that V is a birational module-finite extension of A.
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Hence, for every core A of V ,

V = A

A is a CM complete local domain with dimA = 1

V /n ∼= A/m

where m (resp. n = tV ) stands for the maximal ideal of A (resp. V ).

Let o(−) denote the n-adic valuation of V , and set

H = v(A) = {o(f ) | 0 6= f ∈ A}.
Note that

H = v(A) is symmetric ⇐⇒ A is Gorenstein (Kunz, 1970)

Let I be an Ulrich ideal of A with µA(I ) = 2. Choose f , g ∈ I s.t. I = (f , g) and
I 2 = fI . Then

AI = I : I =
I

f
= A+ A · g

f

is a core of V , and v(AI ) is symmetric if A is Gorenstein.
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Lemma 2.2 (Key Lemma)

Let I be an Ulrich ideal in A with µA(I ) = 2. Then one can choose f , g ∈ I
satisfying the following conditions, where a = o(f ) and b = o(g).

(1) I = (f , g) and I 2 = fI .

(2) a, b ∈ H and 0 < a < b < a+ c(H).

(3) b − a 6∈ H, 2b − a ∈ H, and a = 2 · ℓA(A/I ).

(4) If a ≥ c(H), then e(A) = 2 and I = A : V .

■ Method of computation

Step 1 · · · Let I ∈ XA with µA(I ) = 2. Choose f , g ∈ I which satisfy
the conditions in Lemma 2.2.

Step 2 · · · Consider AI = A+ A · g
f and determine v(AI ).

Step 3 · · · Determine the possible pair (o(f ), o(g)).

Step 4 · · · Determine the form of generators of I .

Step 5 · · · Conversely, the ideal of the form as in Step 4 is an Ulrich ideal.
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3. Main theorem

Theorem 3.1 (Main theorem)

Let ℓ ≥ 7 be an integer such that gcd(3, ℓ) = 1 and set A = k[[t3, tℓ]].

(1) Suppose that ℓ = 3n + 1 where n ≥ 3 is odd. Let q = n−1
2 . Then

XA =

{(
tℓ +

q∑
j=1

αj t
ℓ+3j−1, tℓ+3q+2

) ∣∣∣∣∣ α1, α2, . . . , αq ∈ k

}
⋃ {(

t6i +
i−1∑
s=0

αst
ℓ+3s , tℓ+3i

) ∣∣∣∣∣ 1 ≤ i ≤ q, α0, . . . , αi−1 ∈ k, α0 ̸= 0

}
.

(2) Suppose that ℓ = 3n + 1 where n ≥ 2 is even. Let q = n
2 . Then

XA =

{(
t6i +

i−1∑
s=0

αst
ℓ+3s , tℓ+3i

) ∣∣∣∣∣ 1 ≤ i ≤ q, α0, . . . , αi−1 ∈ k, α0 ̸= 0

}
.
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Theorem 3.1 (continued)

(3) Suppose that ℓ = 3n + 2 where n ≥ 1 is odd. Let q = n−1
2 . Then

XA =

{(
t6i +

i−1∑
s=0

αst
ℓ+3s , tℓ+3i

) ∣∣∣∣∣ 1 ≤ i ≤ q, α0, . . . , αi−1 ∈ k, α0 ̸= 0

}
.

(4) Suppose that ℓ = 3n + 2 where n ≥ 2 is even. Let q = n
2 . Then

XA =

{(
tℓ +

q∑
j=1

αj t
ℓ+3j−2, tℓ+3q+1

) ∣∣∣∣∣ α1, α2, . . . , αq ∈ k

}
⋃ {(

t6i +
i−1∑
s=0

αst
ℓ+3s , tℓ+3i

) ∣∣∣∣∣ 1 ≤ i ≤ q, α0, . . . , αi−1 ∈ k, α0 ̸= 0

}
.

Moreover, the coefficients αi ’s in the system of generators of I ∈ XA are uniquely
determined for I .

Naoki Endo (Meiji University) Ulrich ideals June 15, 2022 15 / 17



1. Introduction 2. Method of computation 3. Main theorem

We denote by X g
A the set of Ulrich ideals in A generated by monomials in t.

Then X g
A is a finite set (GOTWY, 2014).

Corollary 3.2

Let ℓ ≥ 7 be an integer s.t. gcd(3, ℓ) = 1 and set A = k[[t3, tℓ]]. Then

(1) XA 6= ∅.

(2) XA is finite ⇐⇒ k is a finite field.

(3) X g
A = ∅ ⇐⇒ ℓ = 3n + 1 or ℓ = 3n + 2 for some even integer n ≥ 2

Example 3.3

Let A = k[[t3, t7]]. Then

XA = {(t6 + αt7, t10) | 0 6= α ∈ k}.

Hence, #XA = #k − 1 and A does not contain monomial Ulrich ideals.
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Thank you for your attention.
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